Neuroimaging For Psychiatrists

Professor Julian Trollor
Chair, Intellectual Disability Mental Health
Head, 3DN
School of Psychiatry, UNSW Australia
j.trollor@unsw.edu.au
Overview

- Basics of modern brain imaging techniques including strengths and weaknesses
 - CT (computerised tomography)
 - MRI (Magnetic Resonance Imaging)
 - MRS (magnetic resonance spectroscopy)
 - SPECT (single photon emission computerised tomography)
 - PET (positron emission tomography)
- Clinical Imaging
 - When should imaging be done?
 - Which tool for which job?
 - How to read a scan
 - Determining the significance of the finding
- An Example: Cognitive Decline
- Advances & Future Developments
Computerised Tomography

• Utilises property of attenuation of x-ray beams passing through tissue
• Detectors opposite the source measure extent of this attenuation
• Limitations: spatial resolution (0.5-1cm), radiation, artefact
• Advantages: cheap, available, quick
• Good for: acute blood
• Bad for: subacute blood, posterior fossa & brainstem, small lesions
MRI: Basics 1

• Utilises inherent magnetic field produced by the nuclei of some atoms (e.g., hydrogen proton in H2O)
• External application of strong magnetic field causes alignment of these protons
• Disruption of this alignment occurs by application of a brief pulsed radiofrequency
• Measurement of the radiofrequency omitted as the protons realign in the magnetic field allows characterisation of different tissue
MRI: Basics 2

• Good Points
 – no radiation
 – spatial resolution
 – multiplanar imaging
 – minimal bone distortion
 – good grey/white matter differentiation

• Bad Points
 – claustrophobia, noise, lengthy
 – metal devices/fragments contraindicated
 – expense & access
 – poor at imaging blood
MRI: Multiplanar Imaging
MRI: Advanced 1

- Scanning Sequences
 - TE= Echo time; TR: Repetition time
 - T1: TE<50, TR<1000; CSF dark; +/- Gadolinium
 - T2: TE>80, TR>2000; CSF & fluid white
 - FLAIR: fluid attenuated inversion recovery; like T2 but CSF dark
 - Proton Density: TE<50; TR>2000; most pathology bright
 - Diffusion Weighted Image: low resolution, good for infarcts
 - Susceptibility weighted (SWI): microbleeds
 - MR angiogram: no contrast used
MRI: Advanced 2

- fMRI (Echoplanar): detecting a blood oxygen level dependent signal
 - ↑ blood flow due to neural activity leads to ↓ in deoxyhb
 - Magnetic properties of deoxyhb provides a natural contrast effect
 - Advantages: spatial localisation, high resolution, speed and lack of radiation exposure
 - Applications: neurosurgical planning, localisation of cognitive and perceptual functions, probing disease pathophysiology
MRI: Advanced 3

• MRS: quantification of spectra of compounds
 – 31P (phosphorus MRS): membrane phospholipids & phosphate bonds
 – 1H (proton MRS) purports to measure:
 o Neuronal viability and density [NAA]
 o Membrane synthesis and metabolism [choline, phosphocholine and glycerophosphocholine and creatine/phosphocreatine]
 o Possible glial cell markers [myoinositol (mI)]
Single Photon Emission Computed Topography: History

• 1948: Kety & Schmidt N2O to measure CBF
• 1963: Xe133, multiple detectors, separated white/grey matter-2D
• 1960's-70's: tomography (3D derived from 2D)
• 1980's: newer radiopharmaceuticals
• Better resolution, extended applications
SPECT: Principles (i)

• Creating 3D image based on distribution of radiotracer (isotope)
• Radiotracer is lipophyllic, crosses BBB, becomes trapped
• Radiotracer emits gamma rays (photon)
• Distribution reflects rCBF
SPECT: Principles (ii)

- Gamma rays emitted in all directions
- Collimator prevents non-aligned gamma rays from reaching the detector
- Line of origin of gamma rays detected
- Exact site of origin determined by rotating cameras around the body part to supply multidirectional information
- Gamma rays collide with sodium iodide crystals which emit light at varying intensity depending on the energy of the gamma ray
SPECT: Principles (iii)

Alzheimer’s Disease: Example
Vascular Dementia
Positron Emission Tomography (PET): Principles

- First used in late 1970’s
- Technique based on production of positron emitting isotope
- In a cyclotron, isotopes are bombarded with protons
- Positron has same mass as an electron but a positive charge
PET Principles (cont)

- After injection, decay of isotope, emission of positrons
- Positrons encounter electrons in tissue & annihilation takes place
- Emission of 2 gamma rays (photons) travelling at 180° to each other
- Coincident detection of these photons forms the basis for the detection of the PET image

Positron Emitting Bioisotopes

<table>
<thead>
<tr>
<th>Element</th>
<th>Isotope</th>
<th>$T^{1/2}$ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>^{15}O</td>
<td>2</td>
</tr>
<tr>
<td>Carbon</td>
<td>^{11}C</td>
<td>20</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>^{13}N</td>
<td>10</td>
</tr>
<tr>
<td>Flourine</td>
<td>^{18}F</td>
<td>110</td>
</tr>
</tbody>
</table>

^{18}FDG used to assess cerebral metabolism

^{15}O used to assess cerebral blood flow
Fronto-temporal Dementia

A 56 YO man with a 3 year history of personality change, impulsive behavior, loss of social graces, inflexibility. MMSE 30/30; formal Neuropsychological evaluation – subtle reductions in frontal/executive functions. MRI normal.
Combining information from MRI & PET can be helpful.

A 30 YO woman with a 15 year history of complex partial seizures, poorly responsive to anticonvulsants. MRI shows left hippocampal volume loss. Resting PET shows reduced FDG uptake in left medial temporal lobe. Consistent with hippocampal sclerosis.
PET v’s SPECT

<table>
<thead>
<tr>
<th></th>
<th>PET</th>
<th>SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOLUTION:</td>
<td>5-6mm</td>
<td>7-8mm</td>
</tr>
<tr>
<td>ISOTOPES:</td>
<td>O15, C11, F18</td>
<td>I123, Tc99m, Xe133</td>
</tr>
<tr>
<td>T 1/2 ISOTOPES:</td>
<td>2, 20, 110min</td>
<td>13, 6, 127hrs</td>
</tr>
<tr>
<td>PRODUCTION:</td>
<td>ON SITE</td>
<td>COMMERCIAL</td>
</tr>
<tr>
<td>COST:</td>
<td>$1500-2000</td>
<td>$400-1000</td>
</tr>
</tbody>
</table>
Types Of Imaging Studies

• Simple Resting Studies of rCBF or rCMRGl
• ‘Activation’ Studies
 – Motor
 – Sensory
 – Cognitive (multiple runs in PET and split dose regimes for SPECT)
 – Pharmacological
• Ligand Studies
Shortcomings of PET & SPECT

• Variable sensitivity and specificity
• Cost
• Radiation exposure
• Poor standardisation between centres
 – Variable scanning states
 – Variable resolution of scanner
 – Variable methods of image processing and analysis
Functional Imaging: Variability Of Findings

- Resolution of different scanners
- Radio-isotopes: different properties, doses
- Patient populations: variability in severity, diagnostic criteria, exclusion criteria
- Different scanning conditions: resting state vs activation, failure to control for cognitive process
- Different methods of processing/analysis
Overview

• Basics of modern brain imaging techniques including strengths and weaknesses
 – CT (computerised tomography)
 – MRI (Magnetic Resonance Imaging)
 – MRS (magnetic resonance spectroscopy)
 – SPECT (single photon emission computerised tomography)
 – PET (positron emission tomography)
• Clinical Imaging
 – When should imaging be done?
 – Which tool for which job?
 – How to read a scan
 – Determining the significance of the finding
• An Example: Cognitive Decline
• Advances & Future Developments
When to Image

- Assessment of suspected psychiatric disorder
- Atypical history or progression of psychiatric disorder
- Trauma or insult
- Diagnosis and progression of neurological disorders
Which Tool To Use

- **CT without Contrast**
 - Bleeds, old infarcts, hydrocephalus, cerebral oedema, skull fractures, calcification, metallic foreign bodies.
 - Avoid in pregnancy

- **CT with contrast**
 - Tumour, abscess, meningeal inflammation
 - Not in patients with renal failure or allergy
 - Avoid in pregnancy
Which Tool To Use

• MRI without contrast
 – Posterior fossa lesions
 – Small lesions
 – Discriminating old from new CVA’s
 – Evaluating extent and severity of white matter lesions
• With Gadolinium
 – Good for inflammation, tumours
• Not with pacemaker, other metallic foreign bodies or implants; not good for unstable patients
Which Tool To Use

• SPECT/PET
 – Diagnostic difficulty for degenerative disorders
 – Localisation of lesions or seizure focus
 – Assessment of trauma (acute and residual effects)
 – Interesting research tools
Reading a Structural Scan

• “But I’m not a neuroradiologist”
• Look at the scan
• General impression
 – Generalised cortical atrophy
 – Specific regional cortical atrophy
 – Subcortical structures including white matter loss
• Specific abnormalities: strokes, other lesions
• Compare imaging sequences for contrasts (MRI)
Reading a Functional Scan

• Images printed or on disc are usually summary only and not suitable for interpretation.
• Images available on line are usually more comprehensive
• If reviewing yourself, need to be at the console with the nuclear physician
• Must fit the finding with the clinical information
Determining the Significance

• Need to know what is normal
• Age effects
• Integrating findings with clinical picture
What is “Normal”: MRI

- Age
- Separating old from new eg Neurodevelopmental Insults
- Interpretation must take into account clinical information
Normal Ageing: Structural

- **Ventricular size**
 - ↑ with age: av. rate of increase 3% per year
 - Nonlinear ↑ VBR from 2% to 17%
 - However, clinically rated atrophy is not an inevitable consequence of age
Normal Ageing: Structural

- ↓ Total Brain Volume
- ↓ Reduced Regional Volumes
 - Gray matter
 - Basal ganglia
 - Hippocampus
 - Corpus callosum
 - Frontal lobes
Normal Ageing: Structural

- Coffey et al ‘92

<table>
<thead>
<tr>
<th>Age</th>
<th>% without Vent enlargement</th>
<th>% without Cortical Atrophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>50-59</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>60-69</td>
<td>71</td>
<td>59</td>
</tr>
<tr>
<td>70-79</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td>80+</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>
Normal Ageing: Structural

• Subcortical Hyperintensities
 – \uparrow number and severity on MRI
 – Correlate with CT appearance of decreased density of white matter
 – Most commonly DWM, less commonly PWM or basal ganglia
Normal Ageing: Deep White Matter Lesions
Normal Ageing: Periventricular Hyperintensities
Normal Ageing: Structural

- Significance of SH’S
 - PV caps/rims: thought to be multifactorial
 - Loss of ependymal cells, ↓ myelin density, increased H2O content
 - Unclear significance
 - Severe SH: probably vascular
 - Perivascular spaces
 - Oedema
 - Infarction
 - Demyelination
What is “Normal”: SPECT & PET

- Age:
 - Small reduction in rCBF and rCMRGlut, especially frontal lobes.
 - Some patchiness with age related vascular changes
 - ↑ oxygen extraction
Normal Ageing: Example
Case Vignette 1

- A 55 year old woman with a history of steadily progressive cognitive decline over a 2 year period
- A family history of ‘senile chorea’ & ‘dementia’ in mother who died at age 70
- Personal history of hypertension, an ex smoker
Case Vignette 1 (cont)

- Insidious onset and progression
- Vascular risk factors had been controlled
- Neuropsych deficits
 - Verbal and visual memory, verbal generativity, constructional and praxis
- Bloods: ApoE e4 positive
Resting SPECT

Healthy Subjects

Vignette
CT: Utility

- Helps exclude SOL, NPH, cerebrovascular disease
- Look at pattern of atrophy: generalised atrophy (AD); focal atrophy; head of caudate
- Increased diagnostic accuracy above clinical examination alone
- Temporal lobe orientation of scan may improve sensitivity & specificity (Jobst)
- Utility: initial screening; following progress in atypical cases
MRI: Utility

• Improved visualisation of:
 – Basal structures
 – Demyelination and inflammation
 – Vascular lesions, white matter

• Clinical utility:
 – Atypical cases
 – Diagnostic uncertainty: eg VaD v’s AD
 – Focal lesion suspected
Utility of PET & SPECT Imaging in Dementia

- Cross-sectional Diagnostic Assessment
 - Atypical cases/diagnosis unclear
 - Lack of guidance from structural imaging
- Longitudinal Assessment
 - Diagnostic in unclear or early cases
 - Follow progression
‘Patterns’ in Functional Scans

• Regional Cortical rCBF/rCMRGlu
 – ↓ uptake in posterior temporal and inferior parietal regions suggests AD
 – ↓ uptake in occipital association cortex suggests DLB
 – ↓ uptake in frontal & anterior temporal cortex suggests FTD
 – Other dementias less specific
• Subcortical: reduced striatal rCMRGlu supportive of HD
OTHER DEMENTIAS

- Findings often lack specificity
- Pick’s Disease, FLD & Motor Neurone Disease
 - CT/MRI: frontal atrophy
 - PET/SPECT: bilateral frontal hypoperfusion
- Huntington’s Disease
 - CT/MRI: early caudate atrophy
 - PET: ↓ of 18FDG activity in the striatum may predate symptomatology
Other Dementias

• ADC
 – May show PET or SPECT abnormalities in the absence of structural changes

• Lewy Body Dementia
 – May mimic AD in structural and functional changes

• Parkinson’s Disease: variable findings
 – CT/MRI: generalised atrophy; subcortical atrophy, lateral ventricle width & frontal atrophy correlate with cognitive impairment
 – PET: Global ↓ in metabolism, esp frontal (18FDG)
Vascular Dementia

- CT/MRI
 - MRI superior in identifying extent/pattern of vascular disease
- PET/SPECT
 - Patchy Radiotracer uptake
 - Overlap with other groups:
 - Normal aging
 - Mixed AD/VaD
Vascular Dementia: Example
Types Of Functional Imaging Studies

• Simple Resting Studies of rCBF or rCMRGl
• ‘Activation’ Studies
 – Motor
 – Sensory
 – Cognitive (multiple runs in PET and split dose regimes for SPECT)
 – Pharmacological
• Ligand Studies
• Research
 – Clinical: functional correlations
 – Response to therapies and experimental drugs
 – Challenge with cognitive paradigm: cognitive models of disease.
 – Pathological substrates (amyloid, receptor ligands etc)
Advances in Structural Imaging

- Change in volume with time
 - Cortical, subcortical or lesions
 - Creating maps of tissue loss
- Magnetic resonance spectroscopy (MRS)
 - Brain biochemistry in neuropsychiatric disease
- Functional MRI (fMRI): location of motor strip, cognitive paradigms
- White matter integrity: Diffusion maps
- Microbleeds: using susceptibility weighted images
Volume Based Morphometry

• Inspection
• Segmentation
• Register to a template
• Spatial Normalisation
• Regress brain volumes on other biological data of interest
• Statistical correction for multiple comparisons
Example: Inflammatory Markers and GM Volumes

Table 3 Anatomical region and MNI coordinates of peak voxels within the suprathreshold clusters correlated with inflammatory factors

<table>
<thead>
<tr>
<th>IF</th>
<th>Cluster-level</th>
<th>Voxel-level</th>
<th>T value</th>
<th>Anatomical location (BA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p (corrected)</td>
<td>size (n)</td>
<td>MNI coordinates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>TNF-α</td>
<td><0.001</td>
<td>5931</td>
<td>22</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>-0.002</td>
<td>767</td>
<td>-54</td>
<td>-44</td>
</tr>
<tr>
<td></td>
<td>0.012</td>
<td>850</td>
<td>-54</td>
<td>-22</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>845</td>
<td>6</td>
<td>-66</td>
</tr>
<tr>
<td></td>
<td>0.038</td>
<td>643</td>
<td>-36</td>
<td>12</td>
</tr>
<tr>
<td>IL-1β</td>
<td>0.004</td>
<td>1433</td>
<td>-34</td>
<td>-84</td>
</tr>
<tr>
<td></td>
<td>-0.004</td>
<td>604</td>
<td>-2</td>
<td>26</td>
</tr>
<tr>
<td>VCAM</td>
<td>0.004</td>
<td>604</td>
<td>6</td>
<td>38</td>
</tr>
<tr>
<td>PAI-1</td>
<td>0.035</td>
<td>845</td>
<td>12</td>
<td>-76</td>
</tr>
<tr>
<td></td>
<td>0.038</td>
<td>643</td>
<td>-36</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-26</td>
<td>-6</td>
</tr>
</tbody>
</table>
Example: Subjective Cognitive Complaints
Gray matter atrophy associated with Mild Cognitive Impairment

Figure 1. Voxel-wise GM volumes were compared between aMCI subtypes and the normal control group. The brain regions, in which GM volumes were significantly different between aMCI subtypes and normal controls, were superimposed upon a rendered 3D standard brain template. The significance level was set at voxel-level inference of p<0.005 (uncorrected) combined with cluster-level inference of p<0.05 (FWE-corrected). The controlled covariates included age, sex, years of education, total intracranial volume, scanner, cardiovascular risk score (CVR), and handedness. (A) aMCI<normal controls; (B) aMCI-MD<normal controls; (C) aMCI-MD<aMCI-SD.
Neuroanatomical correlates of cognitive performance in late life

Dementia and Geriatric Cognitive Disorders
Volume 32, Issue 3, December 2011, Pages 216-226
The heritability of brain metabolites on proton magnetic resonance spectroscopy in older individuals

NeuroImage Volume 62, Issue 1 2012 281 - 289
DTI Analysis

- Correct for head movement and eddy current
- Strip Skull
- Fit to model
- Compute FA (Fractional anisotropy map), RD (Radial diffusivity) and AxD (axial diffusivity) maps
- Identify tract using anatomical information (or can be done in whole brain using tract based spatial statistics)
- Create and place mask
- Extract values
Fig. 2. 3D reconstruction of the probability maps of the fornix and corticospinal tract from all subjects. In the top panel, the purple color indicates the right fornix, and the green color represents the left fornix. In the bottom panel, the corticospinal tract was shown in red. Both the fornix and corticospinal tract were overlaid on a 3D rendering of the MNI T1 template.
Sulcal morphometry
The relationship between cortical sulcal variability and cognitive performance in the elderly

Fig. 1. The global sulcal index (g-SI) for each hemisphere is measured as the ratio between the total sulcal area and the outer cortex area. Two participants illustrate (A) a high and (B) a low overall g-SI.
Figure 2. Interrelationships of two-year changes among sulcal width, cortical thickness, subcortical, white matter and grey matter volumes.
Neuroimaging Update: Summary

• Imaging techniques
• Scan Interpretation
• Disease States:
 – Diagnosis: expanded applications
 – Following disease progression/response
 – Probe neuroreceptor/transmitter integrity
• Healthy States:
 – Investigate cognitive function
 – Neuropsychopharmacology research
 – Correlation with structural imaging, ERP’s, EEG